109 research outputs found

    Rationale Discovery and Explainable AI

    Get PDF
    The justification of an algorithm's outcomes is important in many domains, and in particular in the law. However, previous research has shown that machine learning systems can make the right decisions for the wrong reasons: despite high accuracies, not all of the conditions that define the domain of the training data are learned. In this study, we investigate what the system does learn, using state-of-the-art explainable AI techniques. With the use of SHAP and LIME, we are able to show which features impact the decision making process and how the impact changes with different distributions of the training data. However, our results also show that even high accuracy and good relevant feature detection are no guarantee for a sound rationale. Hence these state-of-the-art explainable AI techniques cannot be used to fully expose unsound rationales, further advocating the need for a separate method for rationale evaluation. </p

    Discovering the Rationale of Decisions:Experiments on Aligning Learning and Reasoning

    Get PDF
    In AI and law, systems that are designed for decision support should be explainable when pursuing justice. In order for these systems to be fair and responsible, they should make correct decisions and make them using a sound and transparent rationale. In this paper, we introduce a knowledge-driven method for model-agnostic rationale evaluation using dedicated test cases, similar to unit-testing in professional software development. We apply this new method in a set of machine learning experiments aimed at extracting known knowledge structures from artificial datasets from fictional and non-fictional legal settings. We show that our method allows us to analyze the rationale of black-box machine learning systems by assessing which rationale elements are learned or not. Furthermore, we show that the rationale can be adjusted using tailor-made training data based on the results of the rationale evaluation
    • …
    corecore